If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6x2 + 6x + 7 = 6 Reorder the terms: 7 + 6x + 6x2 = 6 Solving 7 + 6x + 6x2 = 6 Solving for variable 'x'. Reorder the terms: 7 + -6 + 6x + 6x2 = 6 + -6 Combine like terms: 7 + -6 = 1 1 + 6x + 6x2 = 6 + -6 Combine like terms: 6 + -6 = 0 1 + 6x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + x + x2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + x + -0.1666666667 + x2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + x + x2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + x + x2 = 0 + -0.1666666667 x + x2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 x + x2 = -0.1666666667 The x term is x. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. + 0.25 + x2 = -0.1666666667 + 0.25 Combine like terms: + 0.25 = 1.25 1.25 + x2 = -0.1666666667 + 0.25 Combine like terms: -0.1666666667 + 0.25 = 0.0833333333 1.25 + x2 = 0.0833333333 Factor a perfect square on the left side: (x + 0.5)(x + 0.5) = 0.0833333333 Calculate the square root of the right side: 0.288675135 Break this problem into two subproblems by setting (x + 0.5) equal to 0.288675135 and -0.288675135.Subproblem 1
x + 0.5 = 0.288675135 Simplifying x + 0.5 = 0.288675135 Reorder the terms: 0.5 + x = 0.288675135 Solving 0.5 + x = 0.288675135 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = 0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = 0.288675135 + -0.5 x = 0.288675135 + -0.5 Combine like terms: 0.288675135 + -0.5 = -0.211324865 x = -0.211324865 Simplifying x = -0.211324865Subproblem 2
x + 0.5 = -0.288675135 Simplifying x + 0.5 = -0.288675135 Reorder the terms: 0.5 + x = -0.288675135 Solving 0.5 + x = -0.288675135 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = -0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = -0.288675135 + -0.5 x = -0.288675135 + -0.5 Combine like terms: -0.288675135 + -0.5 = -0.788675135 x = -0.788675135 Simplifying x = -0.788675135Solution
The solution to the problem is based on the solutions from the subproblems. x = {-0.211324865, -0.788675135}
| 15c^4-27c^3-6c^2=0 | | 7(q+-20)+(-5)=-5 | | 18t^3y+33t^9-27t^6y^2= | | 6p-30/3p-15 | | r+7.1=9.8 | | -50x+0.81=-2(20x+0.24) | | 25x^2-10xy+y^2= | | 6(t+19)+5=-31 | | .5x-6=-2 | | -3x-(3x+6)=0 | | x^2-6x=6x+5 | | 20x^5+32x^4+48x^3= | | 11p-41+(-9p)=9 | | -2d+4=16 | | 3c+2+c=58 | | 6y-43+(-3y)=2 | | 1.4x^2-2.5x-1=0 | | 9s-9=-39+4s | | 6(2x+1)-3=11+6x+3(2x-9) | | 7m+mn+42+6n= | | -11(s+-19)+(-4)=-37 | | 5x-3y=41 | | 16x^4+4x^2+20x= | | -5p-(-29)+(-11p)=-19 | | 2x=625000000 | | 4(8x-2)/3x=20 | | 7x+5x-5=-5+12x | | 40x^5+32x+25x^3= | | 18x^9+50x^5+49x^7= | | 10p-35+8p=19 | | -5t^2+15t=0 | | 5d-14=8d+4 |